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A REMARK ON THE SYZYGIES
OF THE GENERIC CANONICAL CURVES

LAWRENCE EIN

Let C be a genus g nonhyperelliptic curve. Consider the canonical ring
R= @ H(wZ).

Set V = H%w.) and let S be the polynomial ring Symm(¥'). Then R can be
regarded as a graded S-module. Let C = S/p, where p is the irrelevant ideal
of S. Then C has a minimal graded Koszul resolution:
0->AV®S(-g)—> - > V®S(-1)>5->C - 0.
K, ,(C) is defined to be the Koszul cohomology group K, ,(R) [1, §1] which
is isomorphic to the homogeneous degree p + g part of Torlf( R, C). Observe
that if
0-L,,—> L »>L,>R-0

is a minimal graded free resolution of R, then L, ® C = Tor,(R,C).

Mark Green conjectures that if C is generic, then K ,,(C) =0 for p <
(g —3)/2], [1, 5.6]. It is elementary to show that K, (C)=10 for j>3
(Proposition 2). Now one observes that K,,(C) = 0 is equivalent to Petri’s
theorem, which says that the homogeneous ideal of C in P(V) is generated by
quadrics. In [2], Green and Lazarsfeld showed that if the Clifford index of C is
less than or equal to m, then K, ,(C) # 0. Green conjectures that the converse
is also true [1, 5.1].

In this paper, we study the Koszul cohomologies of a generic curve by the
degeneration method. We show that if K, ,(X) = 0 for a curve of genus #,
then K,,(C) = 0 for a generic curve of genus m, if m = n (mod p + 1) and
m > n.

With the aid of the computer program Macaulay, Bayer, and Stillman had
showed that if C is generic and g < 12, then K, ,(C) = O for p < [(g — 3)/2].
Using their results, we prove that K,,(C) =0 for g > 7 and K,,(C) = 0 for
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g =9 as conjectured by Green. K,,(C) = 0 is equivalent to saying that if

{41, - ,q,} is a basis for the quadrics containing C, then the relation among
the quadrics are generated by the elements of the form 1,4, + --- +1,9,=0
when 1;, - - - ,1,, are linear forms.

I would like to thank M. Green and R. Lazarsfeld for many helpful
discussions. I would also like to thank Bayer and Stillman for their help.
Throughout the paper, we shall work over the complex numbers.

Consider the exact sequence

0-M.»Ve®0,— w-—0.
Set Q.= MX.

The first two propositions are well known to the experts. But I include them
for the convenience of the readers.

Proposition 1.  Assume C is a nonhyperelliptic curve of genus g. Then

(a) There is an exact sequence,

g2
0—w!®0.(D) > M.~ Y O(-p)—0
1

wherep,, - - - ,p,_, are general pointson Cand D =p, + p, + -+ +p,_,.
(b) Ifp < g — 1, then H(AP M, ® w})=0.
(c) The natural map .
$pi1: HYAPTIM ® wc) > HY{(APTIV © w)

is surjective. Hence
8
hO(AP+IQC) = h'l(/\IH'lMC ® ‘*’c) = (p T 1).
(D) K,,(C)=0(p<g~—2)ifandonly if

ho(/\pHQc) < (p f_ 1).
Proof. (a) See 2.3 of [3].
(b) Set E = ¥§720(-p,). Consider the sequence
0> AP 'E® w.® 0.(D) > A?M_® v} > APE ® % — 0.

One sees that HY(APM,. ® w2)=0forp <g— 1.

(¢) Consider

0> AP IM. ® o= APV ® we = APM. ® w2 — 0.

Observe that cok ¢, ; = H'(A? M ® wZ). So ¢, is surjective for p < g — 1.
The second assertion follows from the first part by Serre’s duality.

(d) Consider

bt HOAP WV @ @) » HY(APM. ® W),  coky, = K, ,(C).
Now (d) follows from (c).
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Corollary 2.  Assume C is a nonhyperelliptic curve of genus g. Then

(@) K, ,(C)=0ifp+g—2.

(b) K ,(C)—Oifq>4

Proof Since the homological dimension of R is g — 2, then X, (C)=10
for p > g — 2. Now assume g — 2 > p > 0. Consider

H(AP*'V @ ‘*’c) > H(APM, ® w}) - HYA?" M. ® w2).

K, 3(C) = coka = O by Proposition 1. Similarly X, ,(C) = 0 for g > 4.
Proposition 3.  Assume C is nonhyperelliptic of genus g. Consider the minimal
resolution of R,

dg—2

d,
(3.1) 0> L, ,—L . >L, 5L,»R—0.

g-3
Denote by L, the correspondmg locally free sheaf on P51,

(a)0—>L*®S(—g—1)—>L*®S(g—1) e o> LY L, 8 8(-g—- 1)
is again a minimal resolution of R.

(b) One can recover the curve C from a boundary map d..

©If0<p<g=—2 then ip =E,® F, where E, = @ Ops-1(-p — 1) and
F,= @ Ops-1(-p — 2). Furthermore, tank(E,) = dim K, (C) and rank(F,)
= dim K, ,(C).

(@) IfK,,(C) =0 for anintegerp (p < g — 2), then K;,(C) = 0 forj < p.

Proof. (a) Observe that

Eot/(0c, 6pun(-g)) = (00 e BT 6 -2
. 0, otherwise.
So
Lodr L dr, d*_1
0->Lg—>Lf—> -~ oLy, L —0(g+1) -0

is an exact complex of sheaves. Set N; = kerd * (2 <j < g — 1). Then
H'(Ny_1(i)) = HA(N,, (i) = -+ = HS3(L5(i)) =
Similarly, one shows that Hl(Nj(z')) =0 for 2<j<g—1 Thus G1)*®
S(~g — 1) is a minimal resolution of R.
(b) Let M; = kerd,. Then
E2t8 H(Oc, Ope-1(-g — 1)) = 0.(1) = Emtg_j_3(M' Ops-1(-g = 1)).
(c) By Noether’s theorem and (a), we conclude that L, = @ps-1 and

_2 = Ops-1(-g — 1). Since C is nondegenerate in P¢~! and K, (C)=0
for] >3, L, = El ® F, where

= @O0ps-1(-2) and F, = @ Ope-1(-3).
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Since (3.1) is a minimal resolutiorz, K, (C)=0for <0 and p=>=1. By
Corollary 2, this implies that L,=E, @ F, (p <g—2) where E, =
@D 0ps-1(-p — 1) and F, = @ Ops-1(-p — 2). Furthermore, rank E, =
dim K, ,(C) and rank F, = dim K, ,(C).

(@I K p,zfc ) = 0, then L, = E,. Suppose for contradiction that K, _, ,(C)
#0. Then L, ;, =E, ; ® F,_, where F,_; # 0. We can decompose d, as
/, © g, where f, € Hom(E,, E,_,) and g, € Hom(E,, F,_;). Since (3.1) is a
minimal resolution, g, = 0. Set B, , = cokd,. Then B, ,=F, ;@ B, ,.
Now consider

B:0=H(Lr ,® Oper(—p — 1)) > HY(B}, ® Ops-i(—p — 1)).

Observe that 8 is not surjective. This contradicts that (3.1)* is a minimal
resolution of R(g +1). Thus K, ,,(C)= 0. It follows by induction that
K;,(C)=0for j<p.

Theorem 4. Let X be a nonhyperelliptic genus n curve. Assume K, ,(X) =0
for an integer p where 1 < p < n — 3. Then: .

(a) If C is a general curve of genusn + p + 1, then K, ,(C) = 0.

(b) If C is a general curve of genus m, where m = n mod(p + 1) and m = n,
then K, ,(C) = 0.

Proof. (a) Consider a stable curve C; = XU Y, where Y = P! and XN Y
=4¢,+4g,+ - +q,,, are p + 2 general points on X. Now consider a
one-parameter degeneration #: ¥— 7 where % is a surface and T is an
affine curve. Assume that « is proper and flat and there is a point 1, € T
such that #7'(¢,) = G,. Furthermore if ¢+ ¢, in T, then # (1) =C, is a
smooth curve of genus n + p + 1. Now consider the following line bundle on
C: L= wg,r ® Op(X). Observe that £ | = w¢, for t # 15, &£ | x = wy, and
Lly=0p2p+ 2).

Claim 4.1. ho(a?[co) =n+p+1and &, is generated by its sections.
Consider

(4.1.1) 0-0p(p)>L|,— wx—0,
p+2
(4.1.2) O—>wX(— > ql.) =P, = 0p(2p +2) > 0.
1

By (4.1.1), %L | )=n+p+1, h"(ZL|c) =1 and H(Z|,) maps onto
H%wy). Since the g,’s are general points,

(o 5 o] b1
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Thus H%(Z|,) maps onto H(0p(2p + 2)). So £ |, is generated by its
sections. After replacing 7 by a smaller open set if necessary, we may assume
ML= (n + p + 1)0; and p: 7*7 F— £ is surjective. Set M, = kerp, and
Q.= MZ. Observe that

Qfglc:Qc’ Q%’IX=QX@(P+1)@X,

Qely=(n—p—2)0p &(2p +2)0p(1).
Claim 4.2. BNA?*1 Q¢ ) < (";{ﬁl). Consider

0= AP 1041y ® Opu(p — 2) = AP 1041, » AP0y = 0.
Observe that
hO(/\p+1Q<g|Y ® Opi(-p - 2)) =0,

p+1 1 )
hO(/\p+1Q<g| x) = kgo (p f_ 1_ _ k)ho(/\ka)

_ p+1 ny (n+p+1

—Z(p+1—k)(k)_( p+1
by Proposition 1 and Proposition 3. Thus h°(A?*'Qqg|c ) < ("3A1Y. 1Tt
follows that for generic 7, hA°A?*1Q) < ("7, Thus K,,(C,)=0 by
Proposition 1.

(b) This follows from (a) and induction.

Theorem 5. Let Cbhea general curve of genus g.

() K,5(C) = 0ifg >

(b) K5,(C)=01ifg > 9

(¢) K;5(C)=0ifg>1land g=1o0r 2mod5.

Proof. (a) Using the computer program Macaulay, Bayer, and Stillman had
checked that K ,(C) =0 for p <[(g — 3)/2] if g < 12. So K,,(C) = 0 for
g = 7,8, or 9. Then Theorem 4 will imply that K,,(C) = 0if g > 7. Similarly
one can prove (b) and (c).
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