A REMARK ON THE SYZYGIES OF THE GENERIC CANONICAL CURVES

LAWRENCE EIN

Let C be a genus g nonhyperelliptic curve. Consider the canonical ring

$$R = \bigoplus_{n} H^{0}(\omega_{C}^{n}).$$

Set $V = H^0(\omega_C)$ and let S be the polynomial ring Symm(V). Then R can be regarded as a graded S-module. Let $\mathbb{C} = S/\mu$, where μ is the irrelevant ideal of S. Then \mathbb{C} has a minimal graded Koszul resolution:

$$0 \to \bigwedge^g V \otimes S(-g) \to \cdots \to V \otimes S(-1) \to S \to \mathbb{C} \to 0.$$

 $K_{p,q}(C)$ is defined to be the Koszul cohomology group $K_{p,q}(R)$ [1, §1] which is isomorphic to the homogeneous degree p+q part of $\operatorname{Tor}_p^{\mathcal{S}}(R,\mathbb{C})$. Observe that if

$$0 \rightarrow L_{g-2} \rightarrow \cdots L_1 \rightarrow L_0 \rightarrow R \rightarrow 0$$

is a minimal graded free resolution of R, then $L_p \otimes \mathbb{C} \simeq \operatorname{Tor}_p(R, \mathbb{C})$.

Mark Green conjectures that if C is generic, then $K_{p,2}(C) = 0$ for $p \le [(g-3)/2]$, [1, 5.6]. It is elementary to show that $K_{p,j}(C) = 0$ for $j \ge 3$ (Proposition 2). Now one observes that $K_{1,2}(C) = 0$ is equivalent to Petri's theorem, which says that the homogeneous ideal of C in $\mathbb{P}(V)$ is generated by quadrics. In [2], Green and Lazarsfeld showed that if the Clifford index of C is less than or equal to m, then $K_{m,2}(C) \ne 0$. Green conjectures that the converse is also true [1, 5.1].

In this paper, we study the Koszul cohomologies of a generic curve by the degeneration method. We show that if $K_{p,2}(X) = 0$ for a curve of genus n, then $K_{p,2}(C) = 0$ for a generic curve of genus m, if $m \equiv n \pmod{p+1}$ and $m \geqslant n$.

With the aid of the computer program Macaulay, Bayer, and Stillman had showed that if C is generic and $g \le 12$, then $K_{p,2}(C) = 0$ for $p \le [(g-3)/2]$. Using their results, we prove that $K_{2,2}(C) = 0$ for $g \ge 7$ and $K_{3,2}(C) = 0$ for

Received May 20, 1986. The author was partially supported by a National Science Foundation grant.

 $g \ge 9$ as conjectured by Green. $K_{2,2}(C) = 0$ is equivalent to saying that if $\{q_1, \dots, q_n\}$ is a basis for the quadrics containing C, then the relation among the quadrics are generated by the elements of the form $1_1q_1 + \dots + 1_nq_n = 0$ when $1_1, \dots, 1_n$ are linear forms.

I would like to thank M. Green and R. Lazarsfeld for many helpful discussions. I would also like to thank Bayer and Stillman for their help. Throughout the paper, we shall work over the complex numbers.

Consider the exact sequence

$$0 \to M_C \to V \otimes \mathcal{O}_C \to \omega_C \to 0.$$

Set $Q_C = M_C^*$.

The first two propositions are well known to the experts. But I include them for the convenience of the readers.

Proposition 1. Assume C is a nonhyperelliptic curve of genus g. Then

(a) There is an exact sequence,

$$0 \to \omega_C^{-1} \otimes \mathcal{O}_C(D) \to M_C \to \sum_{i=1}^{g-2} \mathcal{O}_C(-p_i) \to 0$$

where p_1, \dots, p_{g-2} are general points on C and $D = p_1 + p_2 + \dots + p_{g-2}$.

- (b) If p < g 1, then $H^1(\wedge^p M_C \otimes \omega_C^2) = 0$.
- (c) The natural map

$$\phi_{p+1} \colon H^1 \left(\bigwedge^{p+1} M_C \otimes \omega_C \right) \to H^1 \left(\bigwedge^{p+1} V \otimes \omega_C \right)$$

is surjective. Hence

$$h^0(\wedge^{p+1}Q_C) = h^1(\wedge^{p+1}M_C \otimes \omega_C) \geqslant \binom{g}{p+1}.$$

(d)
$$K_{p,2}(C) = 0$$
 ($p < g - 2$) if and only if
$$h^0(\Lambda^{p+1}Q_C) \le \binom{g}{p+1}.$$

Proof. (a) See 2.3 of [3].

(b) Set $E = \sum_{i=1}^{g-2} \mathcal{O}_{C}(-p_{i})$. Consider the sequence

$$0 \to \bigwedge^{p-1} E \otimes \omega_C \otimes \mathcal{O}_C(D) \to \bigwedge^p M_C \otimes \omega_C^2 \to \bigwedge^p E \otimes \omega_C^2 \to 0.$$

One sees that $H^1(\Lambda^p M_C \otimes \omega_C^2) = 0$ for p < g - 1.

(c) Consider

$$0 \to \bigwedge^{p+1} M_C \otimes \omega_C \to \bigwedge^{p+1} V \otimes \omega_C \to \bigwedge^p M_C \otimes \omega_C^2 \to 0.$$

Observe that $\operatorname{cok} \phi_{p+1} = H^1(\bigwedge^p M_C \otimes \omega_C^2)$. So ϕ_{p+1} is surjective for p < g-1. The second assertion follows from the first part by Serre's duality.

(d) Consider

$$\psi_p \colon H^0(\wedge^{p+1}V \otimes \omega_C) \to H^0(\wedge^p M_C \otimes \omega_C^2), \qquad \operatorname{cok} \psi_p \simeq K_{p,2}(C).$$

Now (d) follows from (c).

Corollary 2. Assume C is a nonhyperelliptic curve of genus g. Then

(a)
$$K_{p,3}(C) = 0$$
 if $p \neq g - 2$.

(b)
$$K_{p,q}(C) = 0 \text{ if } q \ge 4.$$

Proof. Since the homological dimension of R is g-2, then $K_{p,q}(C)=0$ for p>g-2. Now assume $g-2>p\geqslant 0$. Consider

$$H^0\big(\bigwedge^{p+1} V \otimes \omega_C^2 \big) \overset{\alpha}{\to} H^0\big(\bigwedge^p M_C \otimes \omega_C^3 \big) \to H^1\big(\bigwedge^{p+1} M_C \otimes \omega_C^2 \big).$$

 $K_{p,3}(C) \simeq \operatorname{cok} \alpha = 0$ by Proposition 1. Similarly $K_{p,q}(C) = 0$ for $q \geqslant 4$.

Proposition 3. Assume C is nonhyperelliptic of genus g. Consider the minimal resolution of R,

$$(3.1) 0 \to L_{g-2} \xrightarrow{d_g-2} L_{g-3} \to \cdots \to L_1 \xrightarrow{d_1} L_0 \to R \to 0.$$

Denote by \tilde{L}_i the corresponding locally free sheaf on \mathbb{P}^{g-1} .

- (a) $0 \to L_0^* \otimes S(-g-1) \xrightarrow{d_1^*} L_1^* \otimes S(-g-1) \to \cdots \to L_{g-2}^* \otimes S(-g-1)$ is again a minimal resolution of R.
 - (b) One can recover the curve C from a boundary map d_i.
- (c) If $0 , then <math>\tilde{L}_p \simeq E_p \oplus F_p$ where $E_p \simeq \oplus \mathcal{O}_{\mathbb{P}^{g-1}}(-p-1)$ and $F_p \simeq \oplus \mathcal{O}_{\mathbb{P}^{g-1}}(-p-2)$. Furthermore, $\operatorname{rank}(E_p) = \dim K_{p,1}(C)$ and $\operatorname{rank}(F_p) = \dim K_{p,2}(C)$.
 - (d) If $K_{p,2}(C) = 0$ for an integer p (p < g 2), then $K_{j,2}(C) = 0$ for $j \le p$. *Proof.* (a) Observe that

$$\operatorname{Ext}^{j}(\mathscr{O}_{C},\mathscr{O}_{\mathbb{P}^{g-1}}(-g)) = \begin{cases} \omega_{C} = \mathscr{O}_{C}(1), & \text{if } j = g-2, \\ 0, & \text{otherwise.} \end{cases}$$

So

$$0 \to \tilde{L}_0^* \overset{d_1^*}{\to} \tilde{L}_1^* \to \cdots \to \tilde{L}_{g-3}^* \overset{d_{g-2}^*}{\longleftrightarrow} \tilde{L}_{g-2}^* \overset{d_{g-1}^*}{\longleftrightarrow} \mathcal{O}_C(g+1) \to 0$$

is an exact complex of sheaves. Set $N_j = \ker d_j^*$ $(2 \le j \le g - 1)$. Then

$$H^1\big(N_{g-1}(i)\big)\simeq H^2\big(N_{g-2}(i)\big)\simeq \cdots \simeq H^{g-2}\big(\tilde{L}_0^*(i)\big)=0.$$

Similarly, one shows that $H^1(N_j(i)) = 0$ for $2 \le j \le g - 1$. Thus $(3.1)^* \otimes S(-g - 1)$ is a minimal resolution of R.

(b) Let $M_j = \ker d_j$. Then

$$\operatorname{Ext}^{g-2}(\mathscr{O}_C,\mathscr{O}_{\mathbf{p}^{g-1}}(-g-1))\simeq\mathscr{O}_C(1)\simeq\operatorname{Ext}^{g-j-3}(M_j,\mathscr{O}_{\mathbf{p}^{g-1}}(-g-1)).$$

(c) By Noether's theorem and (a), we conclude that $\tilde{L}_0 \simeq \mathcal{O}_{\mathbb{P}^{g-1}}$ and $\tilde{L}_{g-2} \simeq \mathcal{O}_{\mathbb{P}^{g-1}}(-g-1)$. Since C is nondegenerate in \mathbb{P}^{g-1} and $K_{1,j}(C) = 0$ for $j \geq 3$, $\tilde{L}_1 \simeq E_1 \oplus F_1$ where

$$E_1 \simeq \bigoplus \mathcal{O}_{\mathbb{P}^{g-1}}(-2)$$
 and $F_1 \simeq \bigoplus \mathcal{O}_{\mathbb{P}^{g-1}}(-3)$.

Since (3.1) is a minimal resolution, $K_{p,q}(C)=0$ for $q\leqslant 0$ and $p\geqslant 1$. By Corollary 2, this implies that $\tilde{L}_p\simeq E_p\oplus F_p$ (p< g-2) where $E_p\simeq \oplus \mathcal{O}_{\mathbb{P}^{g-1}}(-p-1)$ and $F_p\simeq \oplus \mathcal{O}_{\mathbb{P}^{g-1}}(-p-2)$. Furthermore, rank $E_p=\dim K_{p,1}(C)$ and rank $F_p\simeq \dim K_{p,2}(C)$.

(d) If $K_{p,2}(C) = 0$, then $\tilde{L}_p \simeq E_p$. Suppose for contradiction that $K_{p-1,2}(C) \neq 0$. Then $\tilde{L}_{p-1} = E_{p-1} \oplus F_{p-1}$ where $F_{p-1} \neq 0$. We can decompose d_p as $f_p \oplus g_p$ where $f_p \in \operatorname{Hom}(E_p, E_{p-1})$ and $g_p \in \operatorname{Hom}(E_p, F_{p-1})$. Since (3.1) is a minimal resolution, $g_p = 0$. Set $B_{p-2} = \operatorname{cok} d_p$. Then $B_{p-2} \simeq F_{p-1} \oplus B'_{p-2}$. Now consider

$$\beta \colon 0 = H^0 \Big(\tilde{L}_{p-2}^* \otimes \mathscr{O}_{\mathbb{P}^{g-1}} (-p-1) \Big) \to H^0 \Big(B_{p-2}^* \otimes \mathscr{O}_{\mathbb{P}^{g-1}} (-p-1) \Big).$$

Observe that β is not surjective. This contradicts that $(3.1)^*$ is a minimal resolution of R(g+1). Thus $K_{p-1,2}(C)=0$. It follows by induction that $K_{i,2}(C)=0$ for $j \leq p$.

Theorem 4. Let X be a nonhyperelliptic genus n curve. Assume $K_{p,2}(X) = 0$ for an integer p where $1 \le p \le n-3$. Then:

- (a) If C is a general curve of genus n + p + 1, then $K_{n,2}(C) = 0$.
- (b) If C is a general curve of genus m, where $m \equiv n \mod (p+1)$ and $m \geqslant n$, then $K_{p,2}(C) = 0$.

Proof. (a) Consider a stable curve $C_0 = X \cup Y$, where $Y \simeq \mathbb{P}^1$ and $X \cap Y = q_1 + q_2 + \cdots + q_{p+2}$ are p+2 general points on X. Now consider a one-parameter degeneration $\pi \colon \mathscr{C} \to T$ where \mathscr{C} is a surface and T is an affine curve. Assume that π is proper and flat and there is a point $t_0 \in T$ such that $\pi^{-1}(t_0) \simeq C_0$. Furthermore if $t \neq t_0$ in T, then $\pi^{-1}(t) = C_t$ is a smooth curve of genus n+p+1. Now consider the following line bundle on $\mathscr{C} \colon \mathscr{L} = \omega_{\mathscr{C}/T} \otimes \mathscr{O}_{\mathscr{C}}(X)$. Observe that $\mathscr{L}|_{C_t} = \omega_{C_t}$ for $t \neq t_0$, $\mathscr{L}|_X = \omega_X$, and $\mathscr{L}|_Y \simeq \mathscr{O}_{\mathbb{P}^1}(2p+2)$.

Claim 4.1. $h^0(\mathcal{L}|_{C_0}) = n + p + 1$ and $\mathcal{L}|_{C_0}$ is generated by its sections. Consider

$$(4.1.1) 0 \to \mathcal{O}_{\mathbb{P}^1}(p) \to \mathcal{L}|_{C_0} \to \omega_X \to 0,$$

$$(4.1.2) 0 \to \omega_X \left(-\sum_{i=1}^{p+2} q_i \right) \to \mathcal{L}|_{C_0} \to \mathcal{O}_{\mathbb{P}^1}(2p+2) \to 0.$$

By (4.1.1), $h^0(\mathcal{L}|_{C_0}) = n + p + 1$, $h^1(\mathcal{L}|_{C_0}) = 1$, and $H^0(\mathcal{L}|_{C_0})$ maps onto $H^0(\omega_X)$. Since the q_i 's are general points,

$$h^{1}\left(\omega_{X}\left(-\sum_{1}^{p+2}q_{i}\right)\right)=h^{1}\left(\mathscr{L}|_{C_{0}}\right)=1.$$

Thus $H^0(\mathscr{L}|_{C_0})$ maps onto $H^0(\mathscr{O}_{\mathbb{P}^1}(2p+2))$. So $\mathscr{L}|_{C_0}$ is generated by its sections. After replacing T by a smaller open set if necessary, we may assume $\pi_*\mathscr{L} \simeq (n+p+1)\mathscr{O}_T$ and μ : $\pi^*\pi_*\mathscr{L} \to \mathscr{L}$ is surjective. Set $M_\mathscr{C} = \ker \mu$, and $Q_\mathscr{C} = M_\mathscr{C}^*$. Observe that

$$\begin{aligned} Q_{\mathscr{C}}|_{C_i} &\simeq Q_{C_i}, \qquad Q_{\mathscr{C}}|_X = Q_X \oplus (p+1)\mathcal{O}_X, \\ Q_{\mathscr{C}}|_Y &\simeq (n-p-2)\mathcal{O}_{\mathbb{P}^1} \oplus (2p+2)\mathcal{O}_{\mathbb{P}^1}(1). \end{aligned}$$

Claim 4.2.
$$h^1(\bigwedge^{p+1} Q_{\mathscr{C}}|_{C_0}) \leq \binom{n+p+1}{p+1}$$
. Consider

$$0 \to \bigwedge^{p+1} Q_{\mathscr{C}}|_{Y} \otimes \mathscr{O}_{\mathbb{P}^{1}}(-p-2) \to \bigwedge^{p+1} Q_{\mathscr{C}}|_{C_{0}} \to \bigwedge^{p+1} Q_{\mathscr{C}}|_{X} \to 0.$$

Observe that

$$\begin{split} h^0 \left(\bigwedge^{p+1} Q_{\mathscr{C}} |_{Y} \otimes \mathcal{O}_{\mathbb{P}^1} (-p-2) \right) &= 0, \\ h^0 \left(\bigwedge^{p+1} Q_{\mathscr{C}} |_{X} \right) &= \sum_{k=0}^{p+1} \binom{p+1}{p+1-k} h^0 \left(\bigwedge^k Q_X \right) \\ &= \sum \binom{p+1}{p+1-k} \binom{n}{k} = \binom{n+p+1}{p+1} \end{split}$$

by Proposition 1 and Proposition 3. Thus $h^0(\wedge^{p+1}Q_{\mathscr{C}_t}) \leq \binom{n+p+1}{p+1}$. It follows that for generic t, $h^0(\wedge^{p+1}Q_{C_t}) \leq \binom{n+p+1}{p+1}$. Thus $K_{p,2}(C_t) = 0$ by Proposition 1.

(b) This follows from (a) and induction.

Theorem 5. Let C be a general curve of genus g.

- (a) $K_{2,2}(C) = 0$ if $g \ge 7$.
- (b) $K_{3,2}(C) = 0$ if $g \ge 9$.
- (c) $K_{4,2}(C) = 0$ if $g \ge 11$ and $g \equiv 1$ or $2 \mod 5$.

Proof. (a) Using the computer program Macaulay, Bayer, and Stillman had checked that $K_{p,2}(C) = 0$ for $p \le [(g-3)/2]$ if $g \le 12$. So $K_{2,2}(C) = 0$ for g = 7, 8, or 9. Then Theorem 4 will imply that $K_{2,2}(C) = 0$ if $g \ge 7$. Similarly one can prove (b) and (c).

References

- M. Green, Koszul cohomology and the geometry of projective varieties, J. Differential Geometry 19 (1984) 125–171.
- M. Green & R. Lazarsfeld, Appendix: The nonvanishing of certain Koszul cohomology groups,
 J. Differential Geometry 19 (1984) 168–171.
- [3] _____, A simple proof of Petri's theorem on canonical curves, Geometry Today (Giornate Geometria Roma 1984), Birkhauser, 1985, 129–142.

University of Illinois, Chicago